

AirMatrix[®] Surface Mount Fuses AF Series, 1206 Size

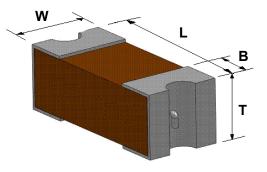
Application Fields:

- Notebook, Ultrabook
- Backlight Driver
- DC/DC Converter
- Low voltage lighting power
- Automotive electronics

Clearing Time Characteristics:

% of Current Rating	Clearing Time at 25°C		
» of current Rating	Min.	Max.	
100%	4 hour		
250%		5 seconds	

Agency Approval:


Recognized Under the Components Program of Underwriters Laboratories. File Number: E232989

Features:

- Fast acting at 250% overload current level
- Excellent inrush current withstanding capability
- Extremely thin body for space saving
- Much safer with wire-in-air design
- Fiberglass enforced epoxy fuse body
- Copper termination with nickel and tin plating
- Operating temperature range: -55°C to +125 °C (with derating)
- 100% lead-free

Shape and Dimensions:

Unit	Inch	mm
L	0.126 ± 0.008	3.20 ± 0.20
w	0.063 + 0.012 / -0.004	1.60 + 0.30 / -0.20
т	0.042 ± 0.006	1.08 ± 0.15
В	0.033 ± 0.012	0.85 ± 0.30

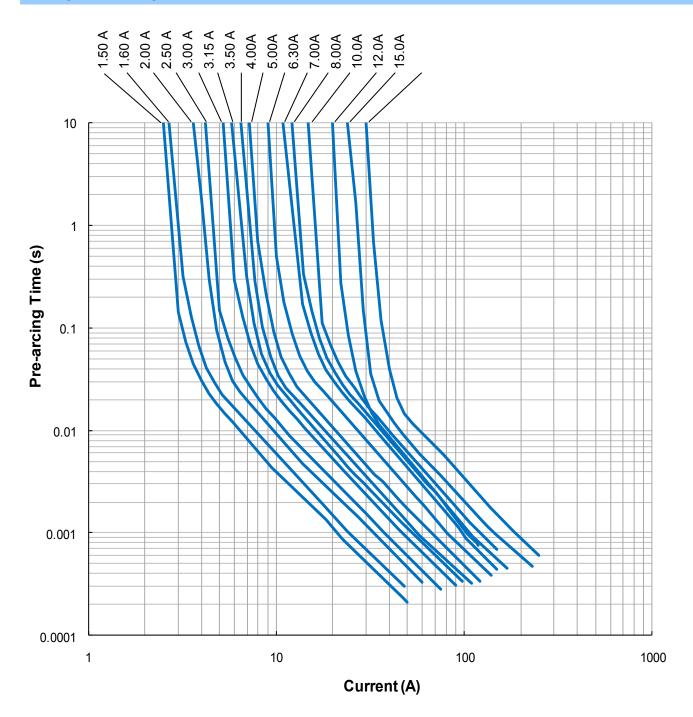
AirMatrix[®] Surface Mount Fuses AF Series, 1206 Size

Ordering Information:

Part Number	Current Rating (A)	Marking (White)	Voltage Rating (VDC)	Interrupting Rating	Nominal DCR (Ω)	Nominal I ² t (A ² s)	
AF1206F1.50TM	1.50	G			0.050	0.37	
AF1206F1.60TM	1.60	Т			0.043	0.52	
AF1206F2.00TM	2.00	Ι			0.032	0.88	
AF1206F2.50TM	2.50	J	65	50A@65\/DC	0.028	1.1	
AF1206F3.00TM	3.00	К	60		50A@65VDC	0.022	1.9
AF1206F3.15TM	3.15	V				0.020	2.2
AF1206F3.50TM	3.50	L			0.018	2.6	
AF1206F4.00TM	4.00	М			0.016	3.3	
AF1206F5.00TM	5.00	Ν		32 50A@32VDC	0.013	5.4	
AF1206F6.30TM	6.30	0			0.010	8.9	
AF1206F7.00TM	7.00	Р			0.0092	10.4	
AF1206F8.00TM	8.00	R	32 50		0.0084	13.5	
AF1206F10.0TM	10.0	Q				0.0050	11.2
AF1206F12.0TM	12.0	Х			0.0041	15.0	
AF1206F15.0TM	15.0	Y			0.0035	24.5	

1. Resistance is measured at $\ \leq 10\%$ of rated current and 25 $^\circ\!\!\mathbb{C}$ ambient.

2. Melting I²t is calculated at 0.001 second pre-arcing time.

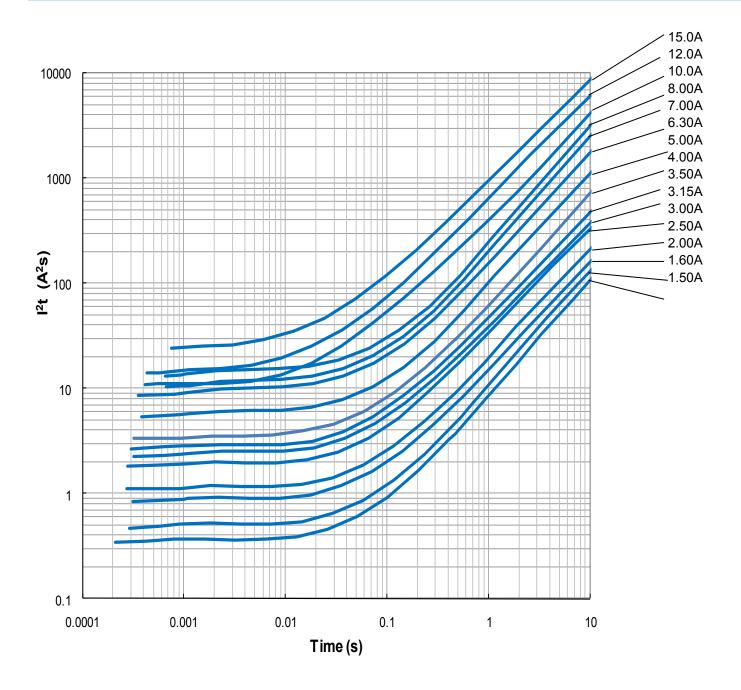

ROHS COMPLIANT HALOGEN C W US

Revision of July 2017

AirMatrix[®] Surface Mount Fuses

AF Series, 1206 Size

Average Pre-arcing Time Curves:



ROHS B HALOGEN FREE C US

Revision of July 2017

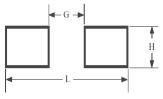
AirMatrix[®] Surface Mount Fuses AF Series, 1206 Size

Average l²t vs. t Curves:

AirMatrix[®] Surface Mount Fuses

Product Identification:

<u>AF2 1.00 V125 T M</u>


- (1) (2) (3) (4) (5)
- (1) Series Code: AF2
- (2) Current Rating Code: 1.00-1.00A
- (3) Voltage Rating Code: V125—125VDC
- (4) Package Code: T Tape & Reel, B Bulk
- (5) Marking Code: M With Marking

<u>AF 1206 F 2.00 T M</u>

- (1) (2) (3) (4) (5) (6)
- (1) Series Code: AF—AF Series, MF—MF Series
- (2) Size Code: Standard EIA Chip Sizes
- (3) Time/Current Characteristic: F
- (4) Current Rating: 2.00-2.00A
- (5) Package Code: T Tape & Reel, B Bulk
- (6) Marking Code: M With Marking

	AF2		AF1206		MF2410		MF1210	
	Inch	mm	Inch	mm	Inch	mm	Inch	mm
L	0.338	8.60	0.173	4.40	0.338	8.60	0.170	4.40
G	0.118	3.00	0.059	1.50	0.118	3.00	0.070	1.70
н	0.124	3.15	0.071	1.80	0.110	2.80	0.110	2.70

Recommended Land Pattern:

Packaging:

Chip Size	Parts on 7 inch (178 mm) Reel
2410 (6125)	2,000
1210 (3225)	2,500
1206 (3216)	3,500

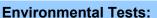
Storage:

The maximum ambient temperature shall not exceed 35°C . Storage temperatures higher than 35°C could result in the deformation of packaging materials.

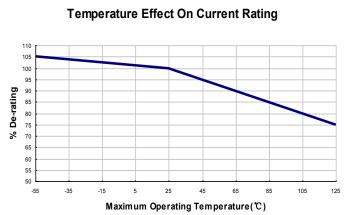
The maximum relative humidity recommended for storage is 75%. High humidity with high temperature can accelerate the oxidation of the solder plating on the termination and reduce the solderability of the components.

Sealed vacuum foil bags with desiccant should only be opened prior to use.

The products should not be stored in areas where harmful gases containing sulfur or chlorine are present.


AirMatrix[®] Surface Mount Fuses

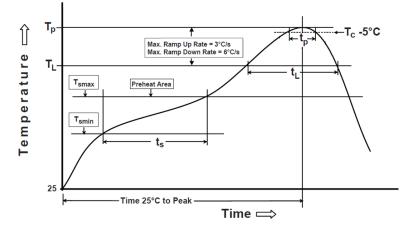
Fuse Selection and Temperature De-rating Guideline:


The ambient temperature affects the current carrying capacity of fuses. When a fuse is operating at a temperature higher than 25°C, the fuse shall be "derated".

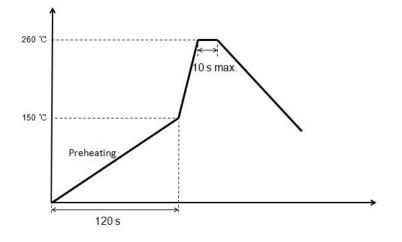
To select a fuse from the catalog, the following rule may be followed:

Catalog Fuse Current Rating = Nominal Operating Current / 0.75 / % De-rating at the maximum operating temperature. Example: At maximum operating temperature of 65°C

Example: At maximum oper % De-rating is 90%. The nor A. The current rating for fuse shall be: 4 / 0.75 / 90% = 5.9 or 6.3 A	65 85 105 125		
Reliability Test	Test Conditio	on and Requirement	Test Reference
Reflow & Bend	3 reflows at 245°C followed b max. (10% for \leq 1 A), no m	Refer to AEM QIQ034 ,QIQ048	
Solderability	245°C, 5 seconds, new solde	er coverage 90% minimum	MIL-STD-202 Method 208
Soldering Heat Resistance	260°C, 10 seconds, 20% DC new solder coverage 75% mi	MIL-STD-202 Method 210	
Life	25°C, 2000 hours, 80% rated drop change≤ ±20%	current (75% for < 1 A), voltage	Refer to AEM QIQ106
Thermal Shock	-65°C to +125°C, 100 cycles, mechanical damage	MIL-STD-202 Method 107	
Mechanical Vibration	5 – 3000 Hz, 0.4 inch double change max., no mechanical	MIL-STD-202 Method 204	
Mechanical Shock	1500 G, 0.5 milliseconds, hal max., no mechanical damage	f-sine shocks, 10% DCR change	MIL-STD-202 Method 213
Salt Spray	5% salt solution, 48 hour exp excessive corrosion	MIL-STD-202 Method 101	
Moisture Resistance	10 cycles, 15% DCR change	MIL-STD-202 Method 106	



AirMatrix[®] Surface Mount Fuses


* Recommended Temperature Profile for Reflow Soldering

Soldering Temperature Profile:

Profile Feature	Pb-Free Assembly			
Preheat/Soak Temperature Min (T _{smin}) Temperature Max(T _{smax}) Time(t _s) from (T _{smin} to T _{smax})	150°C 200°C 60~120 seconds			
Ramp-uprate (T_L to T_p)	3°C/second max.			
Liquidous temperature(T_L) Time(t_L) maintained above T_L	217°C 60~150 seconds			
Peak package body temperature (T_p)	260°C			
Time $(t_p)^*$ within 5°C of the specified classification temperature (T_c)	30 seconds *			
Ramp-down rate $(T_p \text{ to } T_L)$	6°C/second max.			
Time 25°C to peak temperature	8 minutes max.			
* Tolerance for peak profile temperature $(T_{\rm p})$ is defined as a supplier minimum and a user maximum				

* Recommended Temperature Profile for Wave Soldering

Disclaimer:

Specifications are subject to change without notice. AEM products are designed for specific applications and should not be used for any purpose (including, without limitation, automotive, aerospace, medical, life-saving applications, or any other application which requires especially high reliability for the prevention of such defect as may directly cause damage to the third party's life, body or property) not expressly set forth in applicable AEM product documentation. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Warranties granted by AEM shall be deemed void for products used for any purpose not expressly set forth in applicable AEM product documentation. AEM shall not be liable for any claims or damages arising out of products used in applications not expressly intended by AEM as set forth in applicable AEM product documentation. The sale and use of AEM products is subject to AEM terms and conditions of sale.